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Abstract - One of the primary problems in marine robot nav-
igation is the growth of uncertainty. Sensory measurements
of the environment provide an enticing source of information
about vehicle location. Various current approaches to AUV
sensor data fusion fall short of incorporating environmental
measurements in navigation estimation to improve navigation
performance in unmapped environments. We present a uni-
�ed approach to using environmental measurements to map
an unknown environment and localize the vehicle within that
map. First, we discuss the importance of our feature-based
approach to concurrent mapping and localization (CM&L).
Innovative aspects of this algorithm, including feature mod-
eling and decision dependencies, are highlighted. We then
present our feature-based CM&L algorithm. Finally, we draw
conclusions about the challenges in implementing this algo-
rithm and the performance gains expected for AUV naviga-
tion.
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I. NAVIGATION INCORPORATING
ENVIRONMENTAL INFORMATION

Autonomous underwater vehicle (AUV) navigation is
plagued by the insu�ciency of proprioceptive informa-
tion to bound error growth. The kinds of information
available to the vehicle from itself, such as dead reckon-
ing and inertial navigation systems (INS), provide infor-
mation about the derivatives of vehicle position, and so
are subject to uncorrectable drift. To navigate accurately
for missions of any substantial length (in duration, path
length, or number of maneuvers), some form of ground-
�xed relative positioning information must be obtained.
In land robotics, this requirement can often be met by the
global positioning system (GPS). AUVs can surface to re-
set their navigation systems with GPS, but navigational
error will grow whenever they are away from the surface.
Often, acoustic beacons are deployed in a known arrange-
ment to allow ground-�xed position measurements (e.g.
LBL or USBL navigation). While these solutions work in
some scenarios, there are missions where predeployment
of an acoustic array or surface breaching to acquire GPS
�xes are undesirable or impossible.
There is, however, another source of considerable infor-

mation regarding ground-�xed relative position available
during most missions: the environment through which

the vehicle is moving. Most AUVs are equipped with
some form of organic sonar (e.g. for measuring altitude,
obstacle avoidance, or mapping the environment). If, in
such a case, an accurate map of the bathymetry through
which the vehicle traveled were available, bathymetric
data could provide the vehicle with ground-�xed relative
position information [8]. The question arises, though,
what constitutes an accurate map and how can errors
be dealt with. Even given these answers, there remain
missions in areas where no map of su�cient accuracy or
detail is available.

The project of concurrent mapping and localization
(CM&L) is to extend this idea to unknown environments.
In such a case, no prior map is available, but distinctive
features can be identi�ed and mapped as they are en-
countered. Concurrent to mapping these environmental
features, subsequent measurements of these features can
provide ground-�xed relative position information to im-
prove vehicle navigation. Concurrent mapping and local-
ization is, therefore, a uni�ed approach to incorporating
environmental information into vehicle navigation.

There are several current approaches which attempt to
incorporate environmental information in order either to
map the environment or to aid in navigation. Leonard
et al. [1, 3, 2] have developed multiple hypothesis track-
ing for mapping unknown environments. This approach
starts with a model-based decomposition of the environ-
ment and stresses using the physics of the sensing process
to analyze and fuse sensor data in a theoretically consis-
tent manner. Multiple competing hypotheses are com-
pared within a Bayesian framework to provide increased
explanatory power when distinguishing between possible
alternatives. However, vehicle navigational uncertainty
is not accounted for and can quickly lead to estimate
divergence.

The stochastic map has been proposed by Smith et

al. [6] and partially implemented by Moutarlier and
Chatila [4] using a land robot. This augments vehicle
state to track features in a Kalman �lter. Model-level
interactions, such as feature track initiation and mea-
surement explanation, are treated in a somewhat ad hoc

manner. Also, there is no attempt to resolve ambigui-
ties in the source of measurements (the data association
problem).

Stewart [7] investigated stochastic backprojection as a
method for probabilistically mapping where sensor data
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is coming from. The measurements are probabilisti-
cally smeared to account for various forms of uncertainty
(measurement noise, process noise, and vehicle naviga-
tion uncertainty). A cell-based representation of the en-
vironment is used; there are no discrete features postu-
lated.
These approaches to incorporating environmental in-

formation into navigation fail to adequately address oper-
ation in unknown environments. While Uhlmann [9] has
considered some of the implementation issues for CM&L
(in particular, nonlinear estimation and uncertain corre-
lations), he stops short of addressing the problem in a
more general way.
There are three key elements needed for a viable ap-

proach to concurrent mapping and localization: explicit
handling of vehicle uncertainty, delayed decisions based
on multiple, competing hypotheses, and a feature-based
representation of the environment. The �rst of these
needs has been demonstrated by Moran [3]. The sec-
ond holds in particular if a feature-based representation
is used. In this case, delayed decisions are essential in
providing proper explanatory power for decision-making.
The need for a feature-based representation is not ob-

vious, and will be addressed in the next section. Then we
will consider two innovative aspects of our CM&L algo-
rithm: feature modeling and decision dependency. This
will lead to a discussion of the algorithm itself. We will
conclude with an outline of the challenges posed by the
implementation of this algorithm and the expected nav-
igational bene�ts of CM&L.

II. WHY HAVE FEATURES?

We have proposed a feature-based approach to incorpo-
rating environmental measurements into navigation, but
it is prima facie unobvious why the environment should
be represented in discrete features. There are many rea-
sons for choosing such a representation scheme, and we
explore a number of the most compelling here.
As stated above, cell-based representations seek to

determine where particular measurements come from.
Feature-based approaches additionally try to estimate
what measurements come from, or, what processes give
rise to particular measurements. Part of the motiva-
tion here is based on how the environment is modeled.
In many cases, the physical processes underlying sensor
measurement can be broken into discrete mathematical
models. For example, sonar returns are characterized
as specular or di�use. Feature-based representation of
the environment allows the use of multiple models to de-
scribe the measurement processes for di�erent parts of
the environment.
One reason for avoiding a cell-based approach is the

e�ect of data smearing. Cell-based approaches often
smear measurements onto a region of the map to account
for measurement and navigational uncertainty. However,
these two types of uncertainty are fundamentally di�er-
ent. Navigational uncertainty is an a posteriori amalgam
of measurement and process noises. Measurement noise

is stipulated a priori. By combining these uncertain-
ties for data smearing, information is lost. If a feature-
based approach is taken, a distinction is made between
modeling features themselves and mapping the features
globally. Characterization of a feature and relative po-
sitioning with nearby features can be obtained with low
uncertainty (near the level of measurement noise) even
when the vehicle navigational uncertainty is high. Thus,
the vehicle can acquire information about a feature while
yielding little information about the global map. This ad-
vantage is particularly useful when the vehicle can later
back out map information (e.g. by relocating using pre-
viously discovered features). In a cell-based approach,
the local information would be lost by reducing the in-
formation content to global levels of certainty.
Two �nal reasons for a feature-based approach arise

from its inherent discretization of the environment. First,
features are localized in extent, and feature size can (and
probably will) be matched to sensor footprint. While
�eld-oriented processing of data yields positional infor-
mation (the depth is seven meters and the seven meter
contour runs here), localized interpretations often go fur-
ther in localizing the vehicle (the vehicle is on the east
side of this hill). Second, features can be grouped to-
gether to form features, i.e. a network of features can
itself be a feature. In the parlance of object-oriented
analysis, features form a homomorphic hierarchy. This
is important in providing feature distinguishability. If
dots are features, they all look pretty much alike. But
if we can form constellations of dots as features, recog-
nizing particular features (constellations, and, therefore,
individual dots) becomes much easier.
All of these reasons have led us to the conclusion that

a feature-based representation is appropriate. This will
especially be true in unknown environments, where ex-
isting maps do not tempt us into using a cell-based ap-
proach. Even when prior maps are available, however, we
can use feature models to extract a feature-based repre-
sentation from what is, essentially, a �eld- or cell-based
representation.
A feature-based representation does, of course, require

some knowledge in order to model the features. Although
one can envision developing an adaptive conception of
features, for now, this requirement means some a priori

knowledge about the kind of environment to be encoun-
tered, even if speci�c details (i.e. a map) are unnecessary.
In a way, our feature-based representation is a way to en-
code our a priori knowledge about the environment. In
the next section, we will develop a generalized method
for dealing with this knowledge.

III. FEATURE MODELING

In order to have a feature-based environmental repre-
sentation, we need an understanding of what a feature
is. Questions about what features are, how they can
be detected, measured, and tracked, and what parts of
the environment they represent fall into the category of
feature ontology. Feature ontology is the sum of our a



priori knowledge about the environmental context of the
vehicle. We have developed a generalized framework for
dealing with features; feature ontology is encapsulated in
a Markov network of state observers. Essentially, an ob-
server is a plant model for the vehicle or a feature, allow-
ing a current estimate to be projected into a prediction
of the plant (vehicle or feature track) at the next time
cycle. Since what we are doing is predicting the future,
and we are already committed to multiple, competing
hypotheses in other portions of the algorithm, there is
no reason not to hedge our bets by making more than
one prediction. There are a number of reasons why this
might be appealing. First, there may be more than one
model for the feature in question, and we are unsure
about which model to use for this prediction step. This
might occur, for example, when we have separate dy-
namic models for steady motion and maneuvering, and
are not sure whether the feature (or target) will begin a
maneuver in this time step. Second, there may be some
question about what feature model best represents the
phenomenology so far received from the feature. For ex-
ample, in Moran [3], plane and curved features are indis-
tinguishable given a single measurement. The implemen-
tation is a small network of ontic possibilities. When a
measurement is received that might be a plane or a curve,
it is considered a plane. Subsequent predictions are split,
allowing projection as if the feature were a curve as well
as if it were a plane. Since there is this �rm distinc-
tion between the ways in which we model the environ-
ment and the environment itself, the observers present a
noumenal framework, our a priori understanding of the
environmental context of the vehicle.
An observer network is simply that, a set of observers

which are connected together by our understanding of the
ontic possibilities and their consequences. Every state
estimate is formed based on a particular observer.

�i 7! xlk ; (1)

the observer �i gives rise to the state l at time k. Initial
track states, or root states, are formed by an observer
from a given measurement. All other states are trans-
formations of existing state estimates using a particular
plant model, the observer function �. Each observer has
one or more consequent observers:

�+i = f�jgj : (2)

This set of consequent observers operates on the state to
produce a set of projected states at the next time cycle.
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where lXk+1 is the set of states at time k + 1 derived
from state l, xlk, and m is an index over these states.
Given a state estimate from a particular observer, the

next projection will be based on the consequent observers

of that state's observer. An observer can have itself as a
consequent. As a particular, and simple, example, con-
sider a feature model for a point object. The state es-
timate of the object is simply the location (x; y) of the
point. The observer does not alter the estimate (although
it might increase the covariance matrix). A model for
stationary points might consist of a single observer with
itself as its only consequent.

IV. DECISION DEPENDENCY

Feature track trees are essentially a what-if game. Each
state is our (in some sense) best estimate given the mea-
surements, our a priori knowledge, and a series of de-
cisions about what has happened. The need for such
decisions arises due, primarily, to two factors. First,
the stochastic nature of the problem is not limited to
state estimation; we are also estimating what features are
present. The set of features which describe the vehicle's
environmental context is itself a random set. Because of
this, discrete decisions about what features are present
must be made in addition to the continuous decisions
(or estimates) regarding the states of these proposed fea-
tures. Second, because we are taking a multiple hypoth-
esis approach to data association, we purposely allow de-
cisions to be resolved in multiple ways until further ev-
idence can con�rm one hypothesized outcome. Because
states are conditioned on these decisions, it only makes
sense to compare states which have compatible depen-
dencies on this set of decisions. In our what-if game,
each decision we make to arrive at a state estimate splits
the world into a number of possibilities. If we are to
compare two states, there must not be any con
icts in
the set of conditionals which their decision dependencies
represent.

The typical hypothesis is an association of the vehicle,
a feature track, and a measurement. Hypotheses and
their formation is discussed in detail below. The impor-
tant issue in considering decision dependencies is that a
decision is made any time multiple competing hypotheses
are available to describe the source of a measurement or
the disposition of a feature. Once a single hypothesis re-
mains, the decision is con�rmed, and all state estimates
depend on the same outcome, the con�rmed hypothesis
for that decision. If more than one hypothesis remains,
the decision is tentative. Since all states depend on con-
�rmed decisions in the same way, they may be ignored
when determining whether two states have compatible
decision dependencies. So, the set of tentative decisions
� is the set of possible decisions � upon which a state
may depend.

Each state x has a set of decisions upon which it is
dependent,

� (x) = f�ig : (5)

In order for the state to obtain, each of these decisions
�i must be resolved to the necessary hypothesis,

�i (x) = �j : (6)



For two states to have compatible decision dependen-
cies, there can be no decision where the states di�er in
their assumed outcome. Otherwise, the two states are
compatible. We can de�ne a function d (x; �) returning
the number of incompatible decisions between two states,
x and �. This is, in some sense, the ontological distance
between the states. State compatibility is then a�rmed
if this distance is zero:

d (x; �) = 0 i� 8 �i 2 �(x) ;�(�) ;

�i (x) = �i (�) : (7)

Note that there can be decisions that a state is not
dependent on. The estimate represented by that state is
then independent of the outcome of that particular deci-
sion. The state is orthogonal to the decision. By main-
taining decision dependencies in this way (by allowing
states to be orthogonal to certain decisions), we main-
tain as much separability as is possible for the states.
For example, we above used the metaphor that having
two competing hypotheses for a decision outcome was
like splitting the world into two cases. However, we do
not need to split our entire model into two new models,
because much of our estimate structure can be orthogo-
nal to the decision, and thus valid whatever the outcome
of that particular decision. Thus, decision dependencies
result in reducing the order of the problem by maximiz-
ing separability of states and decisions.

V. THE CONCURRENT MAPPING AND
LOCALIZATION ALGORITHM

As shown in Figure 1, three processes, measurement,
navigation, and feature mapping, are combined to im-
prove estimates and to provide global explanations for
what has happened. In the stochastic map of Smith et

al. [6], vehicle and feature track models are combined in
a single (large) state vector. For CM&L, vehicle and fea-
ture tracks are separated to enable a multiple hypothesis
approach. In each time cycle, predicted vehicle states
Xkjk�1 and feature states �kjk�1 are projected from the
previous cycle. These predicted states are compared with
sensor measurements Z using a gating function � to check
for possible matches. Hypotheses � are formed to cover
the following possibilities: a measurement has come from
a feature, a measurement is spurious, a feature is not de-
tected, or a measurement is the result of an unknown
feature. Feature track states are updated �kjk based on
these hypotheses �, the predicted vehicle states Xkjk�1,
and the measurements Z. The hypotheses � are com-
bined to form global assignments 
. Each assignment is
a set of compatible hypotheses which explains the source
of each measurement (a particular known feature, a new
feature, or no feature) and the disposition of each fea-
ture (a particular measurement or a miss). Vehicle track
states are updated Xkjk based upon the possible global
assignments 
, the predicted feature track states �kjk�1,
and the measurements Z. A Bayesian framework is used
to evaluate the likelihood of each of these states, hypothe-
ses, and assignments [5]. Determination of what has, in
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Figure 1. Process 
ow for feature-based CM&L. Information
from relative measurements is used to update vehicle navi-
gation and feature models simultaneously. Hypotheses and
assignments are formed to allow a posteriori situational as-
sessment at a global level.

fact, happened, is made at the global level by rejecting
unlikely assignments. The result of this determination is
a pruning of assignments. This produces, teleologically,
a removal of unsupportable hypotheses and states.

A. State Projection

As discussed above, states can be projected to the next
time cycle using the observer networks. Each vehicle or
feature track state produces a set of at least one projected
state. When more than one projection is made, the like-
lihood of each projected state is modi�ed by the a pri-

ori probabilities assigned to their generative observers.
Thus, the vehicle produces a set of predicted states from
its set of updated states for the previous time cycle,

Xk+1jk = �
�
Xkjk

�
: (8)

Likewise, each feature track i produces a similar set based
on its updated states,

i�k+1jk = �
�
i�kjk

�
: (9)

B. Feature Track Updating

Feature track updating is based on the hypotheses which
are available to explain the disposition of each feature.
Either a feature has given rise to one of the measurements
(a match hypothesis), or it was not detected (a miss hy-
pothesis). To reduce the number of unlikely matches, a
gating function � is used. The gating function combines
a predicted vehicle state, a predicted feature state, and



a measurement to produce a statistical \distance" and
determines whether it falls within the valid gate, that is,
does not exceed the gating threshold 
:

� (x; �; z) < 
: (10)

A common approach is to normalize the Kalman inno-
vation to produce the Mahalanobis distance, which has
a chi-square distribution. For a match hypothesis to be
formed, there must be at least one combination of pre-
dicted vehicle state and predicted feature state such that
the two states are compatible,

d
�
xkjk�1; �kjk�1

�
= 0; (11)

and they gate with the measurement,

�
�
xkjk�1; �kjk�1; zk

�
< 
: (12)

If a match hypothesis is formed, all compatible vehicle
and feature predicted track state pairs produce an up-
dated feature track state using the measurement,

�kjk = K
�
�kjk�1; xkjk�1; zk

�
; (13)

where K represents a traditional Kalman update using
the feature and vehicle models to form an augmented
state vector. The predicted feature state is also carried
through to account for the miss hypothesis. Updates to
other feature estimates due to correlation may then be
added to recover the traditional Kalman estimate.
Hypotheses are also formed to explain measurement

sources. A measurement source may turn out to be a
known feature (a match hypothesis as described above),
no feature (a spurious measurement hypothesis), or a pre-
viously unmodeled feature (a new feature hypothesis). In
this last case, a new feature track is initiated using the
observer network for the feature being proposed. If there
is more than one kind of feature, there can be more than
one new feature hypothesis for a measurement.

C. Vehicle Updating

Since the vehicle takes part in all measurements, vehicle
track states are updated on the basis of global assign-
ments rather than individual hypotheses. Assignments
are consistent, exhaustively explanatory sets of hypothe-
ses. An assignment is a global explanation for what hap-
pened during a time cycle to produce the data received.
The disposition of each feature and the source of each
measurement must therefore be explained by hypotheses.
Consistency ensures that there is one and only one ex-
planation pro�ered by the assignment. For example, one
could not say that measurement z comes from feature �
and also hold that feature � was not detected. Cox and
Leonard [1] discuss an e�cient method for forming all
possible assignments given a set of hypotheses in detail.
Once assignments are formed, possible consistent com-

binations of vehicle track states, feature track states, and
measurements are used to perform Kalman individual
updates:

xkjk = K
�
xkjk�1; �kjk�1; zk

�
: (14)

Again, additive correction terms can be used to recon-
struct the optimal Kalman estimate, in which measure-
ments are traditionally processed in a batch and corre-
lated states are concurrently updated.

D. Pruning

Pruning is an essential step for any multiple hypothesis
estimation scheme; otherwise, the number of prospective
states increases exponentially [1]. Pruning is based on
assignment likelihood. There are three essential methods
for rejecting unlikely explanations. First, a likelihood
threshold may be used, so that explanations which are
very unlikely are rejected quickly. Second, the number
of assignments allowed for each cycle may be limited to
the k best. This prevents excessive horizontal spread
of the track trees, so that the most likely possibilities
can be concentrated on more fully. Finally, a choice can
be forced after n timesteps. Since the primary goal of
multiple hypothesis tracking is to delay decisions until
enough corroborative evidence is produced to make an
unambiguous (or at least less ambiguous) choice among
alternative explanations, it makes sense to institute a
deadline for gathering such corroborative evidence.
All of these methods rank assignments based on their

probabilistic likelihood [5]. The likelihood of an assign-
ment is simply the sum of the likelihoods of its hypothe-
ses. Hypothesis likelihood is calculated from the likeli-
hoods of the possible combinations of states which sup-
port the hypothesis. State likelihood is passed causally
during estimation, and is altered whenever multiple out-
comes are possible.

VI. IMPLEMENTATION CHALLENGES AND
BENEFITS

We have posed the question of how to incorporate envi-
ronmental measurements into vehicle navigation. A con-
sideration of previous e�orts has identi�ed three ingre-
dients for success: explicit modeling of vehicle naviga-
tional uncertainty, consideration of multiple competing
explanatory hypotheses, and a feature-based representa-
tion of the environment. We discussed several reasons for
taking a feature-based approach, including the inability
of cell-based methods to retain local information and the
enhanced positional distinguishability provided by fea-
ture hierarchies. Two innovative aspects of the concur-
rent mapping and localization algorithm, a generalized
treatment of feature modeling and state compatibility
tracking using decision dependencies, were presented. Fi-
nally, an outline of the CM&L algorithm was presented.
There are several challenges remaining in the imple-

mentation of this algorithm. We are currently assessing
CM&L performance in simulation. Software implemen-
tation poses, �rst of all, the challenge of capturing the
considerable (yet, as we have seen, necessary) intrinsic
complexity of the algorithm, while stripping away any
extrinsic complexities. Proper tracking of the causal de-
pendencies among states, hypotheses, and assignments
is essential. E�cient pruning strategies are needed to
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Figure 2. Simulation sample run showing the bene�t of using
environmental cues to reduce navigational error. In each of
the three runs, the vehicle travels in a rectangle; the number
of observable features changes in each run. The left graphs
show the estimated (thick) and actual (thin) vehicle tracks
and the estimated (points) and actual (circles) feature posi-
tions. The right graphs show estimated (upper) and actual
vehicle navigation error. In the �rst run, only dead-reckoning
is available for navigation information. In the second run, one
feature is present. In the third run, eight features are present.
The presence of features not only reduces the navigation er-
ror, but also improves the uncertainty estimate.

enable real-time performance capability [1].
Initial experimentation has been carried out with a

partial implementation of CM&L. In this implementa-
tion, only stationary point features are considered, and
data association ambiguity is removed. Figure 2 shows
some interesting results from this simulation. The same
commanded vehicle track is used for three runs during
which a forward-looking sonar encounters, respectively,
zero, one, and eight features. The right-hand �gures dis-
play the estimated and actual vehicle navigation error
(vehicle position covariance). There are two things to no-
tice as the number of features is increased. First, naviga-
tion error is reduced. The dramatic e�ect of reacquiring
a known feature is visible in the one-feature case. Second,
the estimate of the navigation error is able to track the
actual error more closely. This is due to the fundamen-
tally inaccurate method of accounting for unknown dy-
namic and environmental forces using increased process
noise. By incorporating information from a more accu-
rate sensing model, errors and de�ciencies in the vehicle
dynamic model are overcome. These initial results pro-
vide tantalizing evidence that feature-based concurrent
mapping and localization will provide an enabling capa-
bility for AUVs navigating in unknown environments.

ACKNOWLEDGEMENT

This research has been funded by the O�ce of Naval
Research.

REFERENCES

[1] I. J. Cox and J. J. Leonard. Modeling a dynamic envi-
ronment using a Bayesian multiple hypothesis approach.
Arti�cial Intelligence, 66(2):311{344, April 1994.

[2] J. J. Leonard, B. A. Moran, I. J. Cox, and M. L. Miller.
Underwater sonar data fusion using an e�cient multiple
hypothesis algorithm. In Proc. IEEE Int. Conf. Robotics

and Automation, pages 2995{3002, May 1995.

[3] B. A. Moran. Underwater Shape Reconstruction in Two

Dimensions. PhD thesis, Massachusetts Institute of Tech-
nology, 1994.

[4] P. Moutarlier and R. Chatila. An experimental system
for incremental environment modeling by an autonomous
mobile robot. In 1st International Symposium on Experi-

mental Robotics, Montreal, June 1989.

[5] D. B. Reid. An algorithm for tracking multiple targets.
IEEE Transactions on Automatic Control, AC-24(6), De-
cember 1979.

[6] R. Smith, M. Self, and P. Cheeseman. Estimating
uncertain spatial relationships in robotics. In I. Cox
and G. Wilfong, editors, Autonomous Robot Vehicles.
Springer-Verlag, 1990.

[7] W. K. Stewart. Multisensor Modeling Underwater with

Uncertain Information. PhD thesis, Massachusetts Insti-
tute of Technology, 1988.

[8] S. T. Tuohy. Geophysical Map Representation, Abstrac-

tion, and Interrogation for Underwater Vehicle Naviga-

tion. PhD thesis, MIT, 1993.

[9] J. Uhlmann. Dynamic Map Building and Localization:

New Theoretical Foundations. PhD thesis, University of
Oxford, 1995.


